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Received 16 July 1976 

Abstract. We have applied a systematic method for series transformation to the susceptibil- 
ity of the Heisenberg model on various cubic lattices. The resulting series are sufficiently 
smooth for extrapolation by means of Neville tables, and we conclude that the exponent y 
has the value 1.40*0.02 for both the quantum spin-i and classical models. 

During the past fourteen years the Heisenberg model of ferromagnetism has been 
extensively studied by series expansion techniques. (For a definition of the model see 
the review by Rushbrooke et a1 1974.) However, none of the critical exponents is yet 
known with high precision: for example the more recent estimates of the zero field 
susceptibility exponent y range from 1.36 f 0.04 up to around 1.43, and the question of 
its spin dependence still remains unresolved. The main reasons for this are the shortness 
of the series (the later coefficients are extremely difficult to calculate) and the location of 
non-physical singularities in the complex plane of the expansion variable. 

Most of the exponent estimates to date have been based on Pad6 analysis (e.g. 
Baker eta1 1967, Ritchie and Fisher 1972), on the graphical extrapolation of ratio plots 
(Lee and Stanley 1971), or most recently on confluent singularity analysis (Camp and 
Van Dyke 1976). However, the analysis method which arguably makes least assump- 
tion as to the form of the critical singularity-the numerical extrapolation of smooth 
ratio sequences-has been applied only to the classical (infinite spin) model on the FCC 
lattice, by Ferer et a1 (1971). These authors used the Neville table method (see for 
example Gaunt and Guttmann 1974) to extrapolate ratios and sequences obtained by 
‘critical point renormalization’, with the conclusion y = 1.405 f 0.020. For spin-; and 
for other lattices the presence of non-physical singularities near to or inside the so called 
‘physical disc’ causes irregularities in the sequences involved, and prevents the direct 
use of this type of extrapolation. 

By employing a systematic method for choosing transformations (Pearce 1975) we 
have obtained, for the spin-5 and classica! models on all cubic lattices, new susceptibility 
series which are sufficiently smooth for extrapolation by means of Neville tables, in most 
cases up to the fourth or fifth order. The smooth behaviour results from the transformed 
function having all its nearer singularities to the origin on the positive real axis, 
principally at U, say (corresponding to the physical singularity) and at u1 where 
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u1 2 1.2~4,. If r,, are the ratios of successive coefficients of the transformed series, we 
then have from the theorems of Darboux (1878): 

where b and c are constants which, together with uc, depend on the transformation 
employed. In all cases studied it was found, by the use of a ‘mimic’ function, that the 
term in ( u , / u , ) ~  which vanishes exponentially fast as l / n  tends to zero gave a 
contribution to the Neville entries which was smaller than the general scatter. The term 
b / n 2  was however appreciable in some cases, and in these it was necessary to go to the 
second order to obtain reasonable convergence. 

Thus to estimate the value of the critical point and exponent, a Neville table was 
calculated for the ratios and this was used to obtain an ‘unbiased’ value (in the sense of 
Hunter and Baker 1973) for the singularity location, U,, and its uncertainty. This U, 
range was then employed in calculating a corresponding y range by means of further 
Neville and Pad6 tables. As pointed out by Rushbrooke et af (1974), the value chosen 
for the critical temperature is crucial in determining the value of the exponent. In the 
present estimates, the y range quoted corresponds to what we consider to be the full U, 
range consistent with the available series. 

Since the procedure was essentially the same for all the series analysed, we describe 
it for one case on1 and merely state the final results for the others. The series chosen is 
that for the spin-? model on the sc lattice: this appears to be the one most seriously 
influenced by non-physical singularities (Lee and Stanley 197 1). Pad6 analysis indicates 
singularities in the K-plane (where K = J / k T  is the expansion variable) at approxi- 
mately 0.6 (the physical singularity), -0.08* 0.50i* (0.01 * 0-Oli), and possibly -0.7. 
Thus the circle of convergence appears to be determined by the pair of singularities in 
the left half-plane, rather than by the physical singularity. 

For this particular distribution of singularities, the use of the systematic method 
referred to above leads to the following transformation: the susceptibility x(K) is 
transformed to a new function t ( u ) ,  with U related to K by 

7 

U = U/( 1 + 4 0 . 7 )  
where 

U = K / [ ( 1 - K / a ) ( l - K / a * ) ] 1 ’ 2 ,  

in which a = 0.08 + 0.50i. This transformation leaves the exponent of the critical 
singularity invariant, and is designed to result in a singularity distribution of the kind 
described earlier. That this was actually achieved was verified on Pad6 analysis of the 
series for z ( u ) ,  which indicated singularities in the u-plane only near U = 0.24 (corre- 
sponding to the physical singularity), 0.29,0.42 and - 1.33. As intended, the ratios of 
the transformed coefficients formed the required smooth sequence, suitable for Neville 
table extrapolation to find the value of U,. Such a table was constructed and showed 
convergence within the scatter by the second order, the majority of the entries in the 
second to fourth orders lying within the range 4*220* 0.005, and the remainder close to 
this. We take this range as our estimate for the ratio extrapolant U:’, corresponding to 
uc = 0*2370* 0.0003, or K, = 0.5942 f 0.0020. 

The central U, value was then used in calculating the sequence of exponent estimates 
y,, based on (1): 

(2) y,, = 1 + n(r,,u,- 1) = y + b/n + o ( l / n 2 > .  
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A Neville table for this sequence (reproduced in table 1) shows approximate con- 
vergence to a y value by the first order, as expected from the behaviour of the ratios. To 
provide an additional estimate for the exponent, Pad6 approximants for (uc- 
u)d[lni(u)]/du were evaluated at the chosen uc, (see Hunter and Baker 1973) and 
indicate a y value in the range 1.401 f 0.002. From this result and table 1, we take 
1.395 as a mean estimate for y. 

Table 1. Neville table for the exponent estimate sequence yn, defined in equation (2). 

Order of extrapolant 

n Yn 1st 2nd 3rd 4th 5th 

4 1.0472 
5 1.1119 1.3706 
6 1.1569 1.3821 1.4049 
7 1.1901 1.3900 1.4060 1.4074 
8 1.2152 1.3910 1.3974 1,3829 1.3585 
9 1.2348 1.3919 1.3951 1.3906 1.4002 1.4336 

10 1.2506 1.3923 1.3937 1.3903 1.3899 1.3796 

To calculate the y uncertainty, the above procedure was repeated using instead a uc 
value at one end of its uncertainty range. With u,=O.2373 we obtained y =  
1.420*0.005 from the Neville table and y = 1.428*0.003 from the Pad6 approxi- 
mants. We thus take y = 1.395 * 0.030 as our final estimate. 

The susceptibility series for the spin-; model on the BCC and FCC lattices, and for the 
classical model on the sc and BCC lattices were treated in the same way, and the results 
for K, and y are summarized in table 2. There appears to be general consistency among 
the various y estimates; in particular, the table shows no significant difference, outside 
the uncertainties, between the values for the spin-; and classical models. Thus our 
results support the universality hypothesis, and we take y = P40* 0.02 for both 
models. In view of the shortness of the series we do not believe the value can be quoted 
more precisely than this. 

The implications of y = 1.4 for the other exponent values have already been 
discussed by Ferer er a1 (1971) and by Rushbrooke er a1 (1974). Without reiterating 

Table 2. Estimates for the inverse critical temperature K, and susceptibility exponent y for 
the spin-; and classical (spin infinity) models on the three cubic lattices. ?The classical FCC 
values are those of Ferer eta1 (197 l), a transformation analysis being inappropriate for this 
case. 

Series Kc Y 

spin -f 
sc 0.5942 * 0.0020 1.395*0.03 
BCC 0.3965 f 0.0020 1.41 *0.04 
FCC 0.2485*0.0007 1.405*0.035 

Classical 
sc 0.6940*0.0020 1.415 *0.03 
BCC 0.48701 0*0005 1.40*0*03 
FCCt 0~3149*0~0002 1*405*0.020 
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them in detail, we note that it is possible to sharpen them somewhat by making a new 
estimate of 2v - y from the series for P ~ ( K ) / ( . , ~ ( K ) ) ~  where p 2 ( K )  is the second moment 
of the correlation function (see Ritchie and Fisher 1972). This function is expected to 
be singular at the critical point with exponent 2 v - y ,  and Pad6 estimates for this 
(obtained in the same way as for y above) are given in table 3 for the classical 
Heisenberg model on the FCC lattice. (The corresponding table for the BCC lattice gave 
similar estimates, but that for the sc lattice showed too much scatter to be useful.) If we 
take 2 v - y  to be 0.025*0-001 on the basis of these tables, we obtain a value of 
0.712 f 0.012 for v ;  application of the Fisher equation (Fisher 1964), y = (2 - q)v,  then 
leads to 77 = 0.035 f 0.003. 

Table 3. Pad6 approximants to ( K ,  - K)d[ln(pz(K)/~(K))2)]/dK evaluated at Kc, for the 
classical Heisenberg model on the FCC lattice. The values of these approximants should give 
estimates for 2v-7. ‘a’ indicates an approximant with a defect on the positive real axis, ‘b’ 
one with a negative real axis defect, and ‘c’ one with a pair of defects off the real axis. 

M 2  3 4 5 6 
L 

2 0.02504 0.02499 0.02442 0.02481 0.025176 
3 0.02500 0.02504~ 0.02463 0.02376~ 
4 0.02294 0.02469 0.02480~ 
5 0.02458 0.02466~ 
6 0.02349~ 

These estimates for the correlation exponents are consistent with those of Ritchie 
and Fisher, and Ferer et ul, but that for 77 carries a significantly smaller uncertainty. 
(These author’s estimates were 77 = 0-043 f 0.014 and 0-040* 0.008 respectively.) The 
conclusion that the exponent values are consistent with scaling remains unchanged of 
course from that of Ferer et ul, but we observe that the comparatively precise result for 7) 
implies that either 6 must be slightly less than the appealing value of 5.0, or the 
dimension dependent relation of Gunton and Buckingham (1968) and Fisher (1969): 
2- 77 s d(S - 1)/(6 + 1) must hold as a strict inequality. 

More details of the y and K,  estimation for the other lattices, together with formal 
justification of the transformation methods employed, will be given in a later publica- 
tion. 
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